IntactSDK 1.0.5 User’s Manual

Overview

This document provides a comprehensive guide to using IntactSDK, a C++ interface for Intact.Simulation. IntactSDK allows users to define geometries, material properties, components, assemblies, and boundary conditions. Users can specify units, create simulation scenarios, execute the simulation, and query the results. The simulations can be run with different solver types and the results can be written to a file for visualization. The document also provides code examples and snippets for each step of the simulation process.

Key features and capabilities

  • Physics Support

    • Stress

    • Modal

    • Thermal

  • Geometry Support

    • Brep: Surface mesh

Prerequisites

IntactSDK requires the Intel oneAPI Math Kernel Library. Specifically, at runtime, it requires libiomp5md.dll, which can be obtained from Intel’s redistributable downloads.

Getting Started

The following is simple example, broken down step-by-step, of running a structural simulation. The entire source file and the three required geometry files are available: beam geometry, restraint geometry, load geometry.

  • Include the Intact header

#include "Intact.hpp"
  • Create geometry

auto beam_geometry = Intact::MeshModel("beam.stl");
beam_geometry.instance_id = "simple_cantilever";
beam_geometry.refine(0.02); // refine stl for smoother visualization
  • Create material (material properties are in MKS unit system)

// Create steel material
auto material = std::make_shared<Intact::IsotropicMaterialDescriptor>();
material->density = 7800.0; // kg/m^3
material->poisson_ratio = 0.3;
material->youngs_modulus = 2.1e11; // Pa
  • Create restraints and loads

// Create a fixed boundary condition at one end of the beam
auto fixed_boundary = std::make_shared<FixedBoundaryDescriptor>();
fixed_boundary->boundary = Intact::MeshModel("restraint.stl");

// Create a pressure load at the free end of the beam
auto pressure_load = std::make_shared<PressureForceDescriptor>();
pressure_load->units = Intact::UnitSystem::MeterKilogramSecond;
pressure_load->magnitude = 1000;  // Applying pressure in Pascals
pressure_load->boundary = Intact::MeshModel("load.stl");
  • Setup simulation and solve

// Setup the simulation scenario descriptor
Intact::LinearElasticScenarioDescriptor scenario;
scenario.boundary_conditions = {fixed_boundary, pressure_load};
scenario.metadata.resolution = 10000;
scenario.metadata.units = Intact::UnitSystem::MeterKilogramSecond;
scenario.materials = {{"Steel", material}};

// Associate the material with the model
auto component = Intact::MaterialDomain(beam_geometry, "Steel", scenario);
Intact::Assembly assembly = {component};

// Create the simulator and solve
Intact::StressSimulator simulator(assembly, scenario);
simulator.solve();
  • Query result and create output file to visualize

// Query results for stress distribution
Intact::QueryResult results(component);
Intact::FieldQuery stress_query(Intact::FieldType::VonMisesStress);
simulator.sample(stress_query, results);

// Write results to a file (unit system is saved as a metadata in the vtu file)
results.writeVTK("cantilever_beam_results.vtu", Intact::UnitSystem::MeterKilogramSecond);

How To

Creating Simulation Input

Units

The default Unit System is MKS or MeterKilogramSecond. We allow the following customizations:

  • Specify custom unit for geometry through the Scenario unit (default MKS)

  • Specify custom unit for loads (default MKS)

  • Specify custom unit for materials (default MKS)

Unit System Keywords

Mass

Force

Stress

Length

MeterKilogramSecond

kg

N

Pa

m

CentimeterGramSecond

g

dyne

dyne/cm²

cm

MillimeterMegagramSecond

Mg

N

MPa

mm

FootPoundSecond

slug

lbf

lbf/ft²

ft

InchPoundSecond

lbf s²/in

lbf

psi

in

Geometry

Geometry is specified through a Model object.

MeshModel created from a surface mesh can be defined in two ways:

  1. By specifying a filename to define mesh from a file (STL, PLY)

auto mesh_geometry = Intact::MeshModel("beam.stl");
mesh_geometry.instance_id = "beam";
  1. By constructing mesh face-by-face

// define an empty mesh
auto mesh_geometry = Intact::MeshModel();
mesh_geometry.instance_id = "fixed_boundary";

// add vertices to the mesh and get the vertex id as output
auto v0 = mesh_geometry.addVertex({0.0, 0.0, 0.0});
auto v1 = mesh_geometry.addVertex({1.0, 0.0, 0.0});
auto v2 = mesh_geometry.addVertex({0.0, 1.0, 0.0});

// add faces defined by the vertex id
mesh_geometry.addFacet(v0, v1, v2);

Meshes can be refined, usually for finer interpolation of results during visualization, using the MeshModel::refine method with refinement_level argument. refinement_level is the largest allowed triangle edge as a ratio of the bounding box diagonal.

// mesh geometry created above is further refined
mesh_geometry.refine(0.02);

Structural Material Properties

  • IsotropicMaterialDescriptor to create an Isotropic material. (Unit system is MeterKilogramSecond)

    • density is the material density

    • youngs_modulus is the elastic modulus

    • poisson_ratio is the Poisson ratio

    auto steel_structural = std::make_shared<Intact::IsotropicMaterialDescriptor>();
    
    // Set the density to 7845 kg/m^3, modulus to 200 GPa and poison ratio to 0.29
    steel_structural->density = 7845
    steel_structural->youngs_modulus = 200e9
    steel_structural->poisson_ratio = 0.29
    
  • OrthotropicMaterialDescriptor to create an Orthotropic material. Orthotropic materials are often used to represent composites and wood, where the material properties along one axis are significantly different from the properties along the other axes. (Unit system is MeterKilogramSecond)

    • density is the material density

    • Ex is the elastic modulus in the material’s x-direction

    • Ey is the elastic modulus in the material’s y-direction

    • Ez is the elastic modulus in the material’s z-direction

    • Gxy is the shear modulus in the xy plane

    • Gxz is the shear modulus in the xz plane

    • Gyz is the shear modulus in the yz plane

    • vxy is the poisson ratio in the xy plane

    • vxz is the poisson ratio in the xx plane

    • vyz is the poisson ratio in the yz plane

    • transform is the optional material transform to arbitrarily rotate the axes along which the material properties are defined. Specified as a list of 9 floating point numbers corresponding to a 3x3 matrix. Note the first 3 floating point numbers corresponds to the first row.

    // Create an orthotropic material (Red Pine)
    auto material = std::make_shared<Intact::OrthotropicMaterialDescriptor>();
    material->density = 460.0;             // kg/m³
    material->Ex = 11.2e9;                 // Pa
    material->Ey = 492.8e6;                // Pa
    material->Ez = 985.6e6;                // Pa
    material->Gxy = 907.2e6;               // Pa 
    material->Gxz = 1.08e9;                // Pa 
    material->Gyz = 123.2e6;               // Pa 
    material->vxy = 0.315;
    material->vxz = 0.347;
    material->vyz = 0.308;
    material->transform = {1.0, 0.0, 0.0,
                           0.0, 1.0, 0.0,
                           0.0, 0.0, 1.0}  // transform is optional
    

Thermal Material Properties

  • ThermalMaterialDescriptor to create a thermal material. (Unit system is MeterKilogramSecond)

    • density is the material density

    • conductivity is the conductivity of the material

    • specific_heat is the specific heat of the material

    auto thermal_material = std::make_shared<Intact::ThermalMaterialDescriptor>();
    
    // Set the density, conductivity, and specific heat of the material
    thermal_material->density = 2700.0;    // kg/m^3
    thermal_material->conductivity = 170;  // W/(m·K)
    thermal_material->specific_heat = 500; // J/(kg·K)
    

Component and Assembly

  • A Component is created as a MaterialDomain and takes three inputs

    • A Model object (MeshModel specifically)

    • A material name

    • A ScenarioDescriptor object

    auto bar1_structural = Intact::MaterialDomain(mesh_geometry, "Steel", structural_scenario);
    auto bar2_structural = Intact::MaterialDomain(mesh_geometry, "Red Pine", structural_scenario);
    
  • Assembly is a std::vector of components that are bonded together

    Intact::Assembly structural_assembly = {bar1_structural, bar2_structural};
    

Boundary Conditions

  • Restraints

    • Fixed Boundary A “Fixed Boundary” restraint fixes the selected geometry in all directions.

      The fixed boundary only has one input:

      • the boundary surface to be fixed

      auto fixed = std::make_shared<Intact::FixedBoundaryDescriptor>();
      
      // Set the geometry "restraint.ply" to be fixed
      fixed->boundary = Intact::MeshModel("restraint.ply");
      
    • Fixed Vector A “Fixed Vector” restraint allows for each direction to be optionally set to a specified displacement value, 0 being fixed and no value(std::nullopt) being un-restrained. Note that a structural problem must have all three directions restrained somewhere to be valid. Also, note that this boundary condition doesn’t take custom units and it is always in the units of the scenario metadata.

      A fixed vector requires four inputs:

      • the boundary surface to be fixed

      • the x_value to set the displacement for the x-axis direction (optional)

      • the y_value to set the displacement for the y-axis direction (optional)

      • the z_value to set the displacement for the z-axis direction (optional)

      auto fixed_vector = std::make_shared<Intact::FixedVectorDescriptor>();
      
      // Set the geometry "restraint.stl" to be restrained
      fixed_vector->boundary = Intact::MeshModel("restraint.stl");
      
      // Set the displacements in each direction
      fixed_vector->x_value = 0.2;  // X-direction displacement of 0.2 m
      fixed_vector->y_value = std::nullopt; // un-restrained in the Y-direction at this surface
      fixed_vector->z_value = 0.0;  // fixed Z-direction
      
    • Sliding Restraint A “Sliding Restraint” allows for motion tangential to a specified surface, but fixes motion normal to the specified surface.

      A sliding restraint only has one input:

      • the boundary surface for the sliding restraint condition

      auto sliding_boundary = std::make_shared<Intact::SlidingBoundaryDescriptor>();
      
      // Set the geometry "restraint.stl" for the sliding restraint condition
      sliding_boundary->boundary = Intact::MeshModel("restraint.stl");
      
  • Structural Loads (TractionDescriptor)

    • Vector Force

      “Vector Force” load is a surface load applied to a face in a specified direction. An example of this load is pressing on the top of a book to push it across a table.

      A vector load requires four inputs:

      • the boundary surfaces where the load is applied

      • the direction vector of the force

      • the UnitSystem that applies to the magnitude

      • the magnitude of the force.

      auto load = std::make_shared<Intact::VectorForceDescriptor>();
      
      // Set the geometry "load.stl" the vector load is applied to
      load->boundary = Intact::MeshModel("load.stl");
      
      // Set the vector load direction to be in the -Z direction with a magnitude of 100 lbf
      load->direction = {0, 0, -1};
      load->units = Intact::UnitSystem::InchPoundSecond;
      load->magnitude = 100; // lbf
      
    • Torque

      “Torque” load is a surface load that applies a twisting force around an axis. The direction of the torque is determined using the right-hand rule: using your right hand, point your thumb in the direction of the axis. A positive torque value applies a torque acting in the direction the fingers of your right hand would wrap around the axis. The torque load is applied among the load faces with a distribution that varies linearly from zero at the axis.

      A Torque load requires five inputs:

      • the boundary surfaces where the load is applied

      • the axis of rotation about which the torque acts

      • origin is the starting point of the axis of rotation

      • the UnitSystem that applies to the magnitude

      • magnitude of the torque.

      auto torque_load = std::make_shared<Intact::TorqueForceDescriptor>();
      
      // Set the geometry "load.stl" the torque load is applied to
      torque_load->boundary = Intact::MeshModel("load.stl");
      
      // Set the axis of the torque axis
      torque_load->origin = {10, 1, 1};
      torque_load->axis = {1, 0, 0}; // Set the torque to be about the +X (right-hand rule)
      torque_load->units = Intact::UnitSystem::MeterKilogramSecond;
      torque_load->magnitude = 10; // Set the torque magnitude to 10 N*m
      
    • Pressure

      A “Pressure” load is a surface load specified in terms of force per unit area. Positive pressures ‘push’ into the surface, and negative pressures ‘pull’.

      A Pressure Load requires three inputs:

      • the boundary surfaces where the load is applied

      • the UnitSystem that applies to the magnitude

      • the magnitude of the pressure.

      auto pressure_load = std::make_shared<Intact::PressureForceDescriptor>();
      
      // Set the geometry "load.stl" the pressure load is applied to
      pressure_load->boundary = Intact::MeshModel("load.stl");
      
      // Set the pressure magnitude to 10 Pa
      pressure_load->units = Intact::UnitSystem::MeterKilogramSecond;
      pressure_load->magnitude = 10;
      
    • Bearing Force

      A “Bearing Force” is a surface load applied to a (typically) cylindrical face to approximate the effects of a shaft pressing against the side of a hole. The applied force gets converted to a varying pressure distribution on the portion of the face experiencing compressive pressure. The pressure distribution is computed automatically to achieve the specified overall bearing force.

      A Bearing Force requires three inputs:

      • the boundary surfaces where the load is applied

      • the direction vector of the bearing force

      • the UnitSystem that applies to the magnitude

      • the magnitude of the force

      auto bearing_load = std::make_shared<Intact::BearingForceDescripto>r();
      
      // Set the geometry "load.stl" the bearing load is applied to
      bearing_load->boundary = Intact::MeshModel("load.stl");
      
      // Set the loading direction to be in the -Z
      bearing_load->direction = {0, 0, -1};
      
      // Set the magnitude of the load to 100 N
      bearing_load->units = Intact::UnitSystem::MeterKilogramSecond;
      bearing_load->magnitude = 100;
      
  • Thermal Loads

    • Fixed Boundary (Fixed Temperature)

      A “Fixed Boundary” load fixes the selected geometry to a specified temperature when the value is specified and non-zero.

      The fixed boundary has two inputs:

      • the boundary surface to be fixed

      • the value of the temperature to fix at the boundary surface

      auto fixed = std::make_shared<Intact::FixedBoundaryDescriptor>();
      
      // Set the geometry "fixed_temp.ply" to set a fixed temperaure of 320 K
      fixed_boundary->boundary = Intact::MeshModel("fixed_temp.ply");
      fixed_boundary->value = 320;  // Kelvin
      
    • Convection

      A “Convection” load specifies the transfer of heat from a surrounding medium.

      A thermal convection boundary condition requires three inputs:

      • the boundary surface(s) where the convection is applied.

      • the heat transfer coefficient

      • the environment_temperature of the surrounding medium

      • the units (default MKS)

      // Create an instance of ConvectionDescriptor
      auto convection = std::make_shared<Intact::ConvectionDescriptor>();
      convection->units = Intact::UnitSystem::MeterKilogramSecond;
      
      // Set the geometry "face.ply" the convection is applied to
      convection->boundary = Intact::MeshModel("face.ply");
      
      // Set the heat transfer coefficient to 25 W/m^2K and environment temperature
      convection->coefficient = 25;  // W/m^2K
      convection->environment_temperature = 300;  // Kelvin
      
    • Surface Flux

      Surface “Thermal or Heat Flux” specifies the heat flow per unit of surface area.

      A surface thermal flux requires two inputs:

      • the boundary surface(s) where the flux is applied.

      • the magnitude of the heat flux

      • the units (default MKS)

      // Create an instance of ConstantFluxDescriptor
      auto flux = std::make_shared<Intact::ConstantFluxDescriptor>();
      flux->units = Intact::UnitSystem::MeterKilogramSecond;
      
      // Set the geometry "face.ply" the constant flux is applied to
      flux->boundary = Intact::MeshModel("face.ply");
      
      // Set the flux magnitude to 500 W/m^2
      flux->magnitude = 500;  // W/m^2
      
  • Body Loads/Internal Conditions

    Add body load to the scenario as shown below. (see Scenario Setup section for more details)

    scenario.internal_conditions = {rotational_load, gravity_load};
    
    • Body Load (Linear Acceleration, Gravity)

      Body loads comprise forces that are distributed over a solid volume. They are specified by entering the components of a linear acceleration vector field in which the body is immersed. The material in the body will tend to be pulled in the direction of the acceleration vector.

      The inputs to the body load are:

      • the direction vector of the acceleration field

      • the UnitSystem that applies to the magnitude

      • the magnitude of acceleration

      // Example for a "gravity load"
      auto body_load = std::make_shared<Intact::BodyLoadDescriptor>();
      
      // Set the direction vector to be downward (-Z)
      body_load->direction = {0, 0, -1};
      
      // Set the magnitude to 9.80655 m/s^2
      body_load->units = Intact::UnitSystem::MeterKilogramSecond;
      body_load->magnitude = 9.80665;
      
    • Rotational Load

      Rotational body loads simulate the effect of a body rotating around an axis. Two contributions are considered in a rotational body load: angular velocity and angular acceleration. The angular velocity term simulates the centrifugal effects that tend to throw a body’s material away from the axis of rotation. The angular acceleration term simulates the effect of a rotational acceleration field around the axis of rotation. A positive angular acceleration tends to drag the body’s material in the positive rotational direction according to the right-hand rule.

      A rotational body load has 4 inputs:

      • origin point for the axis of rotation

      • vector defining the axis of rotation

      • angular_velocity (in radians/sec)

      • angular_acceleration (in radians/sec²)

      auto rotational_load = std::make_shared<Intact::RotationalLoadDescriptor>();
      
      // Set the origin at the coordinate system origin
      rotational_load->origin = {0, 0, 0};
      
      // Set the axis of rotation about the y-axis
      rotational_load->axis = {0, 1, 0};
      
      // Set angular velocity to 10 rad/s and angular acceleration to 0.5 rad/s^2
      rotational_load->angular_velocity = 10;
      rotational_load->angular_acceleration = 0.5;
      
  • Thermal Loads

    • Constant Heat

      A “Constant Heat” or body heat flux load applies uniform heat generation over a specified volume.

      Constant heat flux has 2 inputs

      • the instance_id of the components which are producing heat flux

      • the magnitude of the body heat flux

      • the units (default MKS)

      auto constant_heat = std::make_shared<Intact::ConstantHeatDescriptor>();
      constant_heat->units = Intact::UnitSystem::MeterKilogramSecond;
      
      // Set the heat generation to -200,000 W for a beam component
      constant_heat->instance_id = "beam";
      constant_heat->magnitude = -200000.0;  // W
      

Simulation Scenario Setup and Solution

  • Scenario Setup using ScenarioDescriptor

    • Linear Elasticity scenario is created using LinearElasticScenarioDescriptor. It takes the following inputs:

      • boundary_conditions, a list of boundary conditions

      • internal_conditions, a list of internal conditions (body loads)

    • Scenario Metadata, metadata, a set of solver parameters to control the accuracy and speed of the simulation:

      • resolution is the target number of finite elements. An iterative process determines a cell_size that achieves approximately the specified number of elements. You can directly specify the cell_size instead of resolution. Note that decreasing cell_size can quickly result in large numbers of finite elements and long solve times. resolution is recommended for most cases.

      • units sets the unit of the scenario (geometry and results will be in this unit) for example, a geometry in ‘MKS’ that is 6 m long would be 6 mm long when set to ‘MMS’

      • basis_order is the type of finite element used. The default is 1, which would be linear elements. 2 is for quadratic elements.

      • solver_type is the solver type used in the simulation with the following options:

        • MKL_PardisoLDLT (default) is the direct solver and is typically faster for lower resolution (< 200K cells on 32 GB memory), but gets slower and consumes more memory at higher resolutions

        • AMGCL_amg_rigid_body is the iterative solver which is typically faster at high resolution.

      Intact::LinearElasticScenarioDescriptor scenario;
      scenario.materials = {{"Aluminum 6061-T6": material}};
      scenario.boundary_conditions = {fixed_boundary, vector_load, torque_load};
      scenario.internal_conditions = {body_load};
      
      scenario.metadata.resolution = 10000;
      scenario.metadata.units = Intact::UnitSystem::MeterKilogramSecond;
      
      // Optional settings
      scenario.metadata.basis_order = 2; // 2 = quadratic elements
      scenario.metadata.solver_override = Intact::SolverType::AMGCL_amg_rigid_body; // iterative solver
      
    • Similarly, Modal scenario is created using ModalScenarioDescriptor which takes boundary_conditions, a list of boundary conditions, as input.

      • The metadata is the same as for the linear elastic scenario except there is necessary input metadata.desired_eigenvalues that takes in an integer for the number of eigenvalues.

      // Setup the modal simulation scenario
      Intact::ModalScenarioDescriptor modal_scenario;
      modal_scenario.materials = {{"Aluminum 6061-T6": material}};
      modal_scenario.boundary_conditions = {fixed_boundary};
      
      modal_scenario.metadata.resolution = 10000;
      modal_scenario.modal_metadata.desired_eigenvalues = 10;
      
      // Optional settings
      modal_scenario.metadata.basis_order = 2; // 2 = quadratic elements
      modal_scenario.metadata.solver_override = Intact::SolverType::AMGCL_amg_rigid_body; // iterative solver
      
    • Similarly, a thermal scenario is created using StaticThermalScenarioDescriptor which takes a list of boundary_conditions and a list of internal_conditions as input. Note that the material must be a thermal material for this scenario type.

      • The metadata is the same as for the linear elastic scenario with additional input metadata.environment_temperature which specifies the temperature of the environment.

      // Setup the thermal simulation scenario
      StaticThermalScenarioDescriptor thermal_scenario;
      thermal_scenario.materials = {{"Aluminum 6061-T6": material}};
      thermal_scenario.boundary_conditions = {fixed_temp, convection};
      thermal_scenario.internal_conditions = {constant_heat};
      thermal_scenario.thermal_metadata.environment_temperature = 0.0;
      
      thermal_scenario.metadata.resolution = 10000;
      
      // Optional settings
      thermal_scenario.metadata.basis_order = 2; // 2 = quadratic elements
      thermal_scenario.metadata.solver_override = Intact::SolverType::AMGCL_amg; // iterative solver for thermal scenarios.
      
  • Finalize Simulation Setup and Execute

    • Stress Simulation is created using StressSimulator. It takes the following inputs:

      • An assembly or the list of MaterialDomains

      • LinearElasticScenarioDescriptor that describes the simulation scenario

      // Initialize and run the linear elastic scenario
      Intact::StressSimulator simulator = StressSimulator(assembly, scenario);
      simulator.solve();
      
    • Modal Simulation is created using ModalSimulator. It takes the following inputs:

      • An assembly or the list of MaterialDomains

      • ModalScenarioDescriptor that describes the simulation scenario

      // Intialize and run the modal scenario
      Intact::Modalimulator modal_simulator = ModalSimulator(assembly, modal_scenario);
      modal_simulator.solve();
      

Query and Result Output

  • Create a QueryResult object that specifies the domain to be sampled. It takes a single component or an assembly as input

    Intact::Assembly assembly = {component_1, component_2};
    
    Intact::QueryResult results(component_1); // sample only the defined component
    Intact::QueryResult results(assembly); // sample on the full assembly
    
  • Specify a query class and type that defines what quantity you are querying. The query classes and types available are as follows :

    • Global Query is for querying quantities defined for the entire domain/structure. The two GlobalQueryType subclasses available are Frequency & Compliance.

    // GlobalQuery example
    // Create a GlobalQuery to query the first mode of a modal simulation
    Intact::QueryResult results(assembly);
    Intact::GlobalQuery frequency_query(Intact::GlobalQueryType::Frequency, Intact::DiscreteIndex(0));
    
    // Sample the simulation for the specified query
    auto freq_1 = simulator.sample(frequency_query, results);
    std::cout << freq_1.get(0, 0) << std::endl; // Print out the first mode in Hz
    
    // Example use to get all the modes
    // Note, the simulator would need this:
    // modal_scenario.modal_metadata.desired_eigenvalues = 10
    
    for (auto i = 0; i < modal_scenario.metadata.desired_eigenvalues; i++) {
        // Create the query for the current mode
        Intact::GlobalQuery query(Intact::GlobalQueryType::Frequency, Intact::DiscreteIndex(i));
    
        // Sample the query using the simulator
        auto r = simulator.sample(query, results);
    
        std::cout << r.get(0, 0) << std::endl;
    }
    
    • Field Query is for querying field quantities defined at any point in the domain. This depends on the physics type.

      • For Stress Simulation, the following FieldType inputs are available

        • Displacement tuple of dimension 3 for each point

          [x-displacement, y-displacement, z-displacement]
          
        • Strain and Stress are each a tuple of dimension 6 for each point

          [stress_xx, stress_yy, stress_zz, stress_yz, stress_xz, stress_xy]
          [strain_xx, strain_yy, strain_zz, strain_yz, strain_xz, strain_xy]
          
        • TopologicalSensitivity, StrainEnergyDensity, and VonMisesStress are each a tuple of dimension 1 for each point

      • Field Query Interface usage

        // FieldQuery example
        // Create a FieldQuery to query displacement
        Intact::QueryResult results(assembly);
        Intact::FieldQuery displacement_query(Intact::FieldType::Displacement);
        
        // Create a FieldQuery with optional input to query the y-component
        Intact::FieldQuery y_displacement_query(Intact::FieldType::Displacement, 1);
        
        // FieldQuery with optional input to query the norm of displacement
        Intact::FieldQuery displacement_magnitude_query(Intact::FieldType::Displacement, true);
        
        // Sample the simulation with the given query to create a VectorArray
        // * more info on VectorArrays are provided in the subsequent section *
        auto displacement_VectorArray1 = simulator.sample(displacement_query, results);
        auto displacement_VectorArray2 = simulator.sample(y_displacement_query, results);
        auto displacement_VectorArray3 = simulator.sample(displacement_magnitude_query, results);
        
        auto displacement1 = displacement_VectorArray1.get(i, j); // jth component of the displacement (0 = X, 1 = Y, or 2 = Z) at the ith sampling point
        auto displacement2 = displacement_VectorArray2.get(1, 0); // y-displacement value at the second sampling point
        auto displacement3 = displacement_VectorArray3.get(1, 0); // displacement magnitude at the second sampling point
        
    • For Modal Simulation, the only FieldType available is Displacement, which corresponds to the mode shape information and requires an index for the specified mode.

      // Create a field query for the displacement/mode shape of mode 1
      auto mode_num = 0; // first mode
      Intact::FieldQuery modal_field_query(Intact::Field::Displacement, Intact::DiscreteIndex(mode_num))
      

Sample and Export Results

  • Sampling results in-memory

    • Methods to sample results of the simulation and store/print VectorArray results from the queries created above.

      // Query results
      Intact::QueryResult results(assembly);
      Intact::FieldQuery stress_query(Intact::FieldType::Stress); // a field is needed to create a field query
      auto stress_VectorArray = simulator.sample(stress_query, results);
      
    • This sampling is stored in a VectorArray of size n_tuple by dimension, n_tuple is the number of points sampled in the component/assembly and dimension depends on the query type. For example, FieldQuery(Intact::FieldType::Displacement) has a dimension of 3 for each displacement component, thus VectorArray.get(i, 2) would get the z-displacement of point i.

      // Get the number of tuples (vectors) in the VectorArray (one per point results are sampled at)
      auto n_tuples = stress_VectorArray.n_tuples();
      
      // Get the dimension of each vector - in this case 6, one value for each stress component
      auto dimension = stress_VectorArray.dimension();
      
      auto stress_xx = stress_VectorArray.get(i, 0); // stress_xx at i-th sample point
      auto stress_yy = stress_VectorArray.get(i, 1); // stress_yy at i-th sample point
      auto stress_ij = stress_VectorArray.get(i, j); // jth stress component (0, 1, 2, 3, 4, or 5) of the ith tuple
      
  • Export results to a file: Once the query is created, results can be used to write a file which contains all solution fields in VTK UnstructuredGrid format via the results.writeVTK method which has two inputs:

    • file name "*.vtu"

    • UnitSystem is an attribute in the *.vtu ( Note that this argument is just metadata in the *.vtu file. The result magnitudes are in the unit of the scenario regardless of the unit system specified. )

    // Write results to a file (unit system is saved as a metadata in the vtu file)
    Intact::QueryResult results(assembly);
    Intact::FieldQuery stress_query(Intact::FieldType::VonMisesStress);
    simulator.sample(stress_query, results);
    
    // Write results to a file (unit system is saved as a metadata in the vtu file)
    results.writeVTK("cantilever_beam_results.vtu", Intact::UnitSystem::MeterKilogramSecond);
    

Sampling on Custom Geometries

  • Another important functionality is the ability to specify a point set to sample on. This can be done by creating a new sampling_component consisting of vertices at the desired sampling locations. Note that the sampling_component is not to be included in the assembly that is being simulated.

    // Create an empty MeshModel to store vertices for desired sampling locations
    auto sampling_geometry = Intact::MeshModel();
    
    // Add the desired sampling point locations and store their ID for later use
    auto test_index1 = sampling_geometry.addVertex({6.0, 0.0, 0.0});
    auto test_index2 = sampling_geometry.addVertex({3.0, 0.0, 0.0});
    
    auto sampling_component = Intact::MaterialDomain(sample_geometry, "material_name", scenario);
    
    // Define the assembly to be simulated (note that the sampling_component is not included)
    auto component = Intact::MaterialDomain(component_geometry, "material_name", scenario);
    IntactAssembly assembly = {component};
    Intact::StressSimulator simulator(assembly, scenario);
    simulator.solve();
    
    Intact::FieldQuery displacement_query(Intact::Field::Displacement);
    Intact::QueryResult sampled_results(sampling_component) // sample only the custom point set
    auto sampled_VectorArray = simulator.sample(displacement_query, sampled_results);
    
    auto displacement_index1 = sampled_VectorArray.get(test_index1, 0); // x-displacement at above specified index1
    auto displacement_index2 = sampled_VectorArray.get(test_index2, 1); // y-displacement at above specified index2
    

Examples

Complete examples of performing a structural simulation, a modal simulation, or a static thermal simulation are available, as well as the required geometry files: beam geometry, restraint geometry, load geometry.