wiki:sns:snsscript:bending_moments
Bending Moment Extraction
The following example demonstrates how internal stresses computed using Scan&Solve can be integrated to approximate the bending moment acting in a beam model. A short video showing the script in operation may be viewed here.
- function to numerically integrate SnS solution components (lines 13-42)
- function to compute triangle area (lines 46-51)
- function to integrate stress over a trimmed surface (lines 57-90)
- the main routine (lines 93-130)
Option Explicit 'Script written by Michael Freytag 'Script version Monday, September 16, 2013 3:10:56 PM 'variable for the SnSScript plug-in object Public objSnSPlugin 'quadIntegrateMoments: Integrate over the triangle defined by the array of vertices 'in arrVerts using a 7 point quadrature rule 'strObject -the solid with SnS solution data 'arrVerts -the vertices of the triangle to integrate over 'arrCentroid -the centroid of the surface around which moments are being computed Function IntegrateMoments(strObject, arrVerts, arrCentroid) Dim quadWts:quadWts = Array(0.225, 0.13239415, 0.13239415, 0.13239415, 0.12593918, 0.12593918, 0.12593918) Dim quadCoords:quadCoords = Array(0.33333333, 0.33333333, 0.33333333, 0.05961587, 0.47014206, 0.47014206, 0.47014206, 0.05961587, 0.47014206, 0.47014206, 0.47014206, 0.05961587, 0.79742699, 0.10128651, 0.10128651, 0.10128651, 0.79742699, 0.10128651, 0.10128651, 0.10128651, 0.79742699) Dim quadPt(2), coord Dim area: area = TriangleArea(arrVerts) Dim arrQuadratureForce, arrQuadratureMoment, arrQuadratureRadius, arrSum Dim quadID: quadID = 0 arrSum = Array(0, 0, 0) While quadID <= UBound(quadWts) For coord= 0 To 2 quadPt(coord) = (arrVerts(0)(coord) * quadCoords(quadID * 3)) + (arrVerts(1)(coord) * quadCoords(quadID * 3 + 1)) + (arrVerts(2)(coord) * quadCoords(quadID * 3 + 2)) Next 'retrieve the component stresses at the quadrature point arrQuadratureForce = Array(objSnSPlugin.QuerySolutionValue(strObject, "SIGXX", quadPt), objSnSPlugin.QuerySolutionValue(strObject, "SIGYY", quadPt), objSnSPlugin.QuerySolutionValue(strObject, "SIGZZ", quadPt)) 'multiply component stress by area to get force at quadrature point arrQuadratureForce = Rhino.VectorScale(arrQuadratureForce, quadWts(quadID) * area) 'compute the radius to the quadrature point arrQuadratureRadius = Rhino.VectorSubtract(quadPt, arrCentroid) 'compute RxF to get the contribution to the moment arrQuadratureMoment = Rhino.VectorCrossProduct(arrQuadratureRadius, arrQuadratureForce) 'accumulate the sum for the numerical integration, skip numerical outliers If Rhino.VectorLength(arrQuadratureForce) < 10000 Then arrSum = Rhino.VectorAdd(arrSum, arrQuadratureMoment) End If quadID = quadID + 1 Wend IntegrateMoments = arrSum End Function 'TriangleArea: Utility function to compute the area of the triangle defined 'by the array of vertices in arrVerts Function TriangleArea(arrVerts) Dim vec0: vec0 = Rhino.VectorSubtract(arrVerts(1), arrVerts(0)) Dim vec1: vec1 = Rhino.VectorSubtract(arrVerts(2), arrVerts(0)) Dim vecCross: vecCross = Rhino.VectorCrossProduct(vec0, vec1) TriangleArea = 0.5 * Rhino.VectorLength(vecCross) End Function 'StressForce: Utility function to integrate a stress components over a surface 'to determine the moments acting about the centroid of the surface 'strObject -the solid with SnS solution data 'strSurfaceObject -the surface over which the integration should occur (typically a cross-section of strObject) Function StressMoment(strSolid, strSection) Dim meshObject,arrFaces,arrVerts(2),fid,arrCentroid Dim sumStressMoment sumStressMoment = Array(0, 0, 0) 'Extract the analysis mesh for the surface objects If Rhino.IsObject(strSection) Then meshObject = Rhino.ExtractAnalysisMesh(strSection) Else Rhino.Print "Invalid surface object" StressMoment = Array(0, 0, 0) End If 'Integrate the desired stress component over the facets of the extracted mesh If Not IsNull(meshObject) Then arrCentroid = Rhino.SurfaceAreaCentroid(strSection) Rhino.MeshQuadsToTriangles meshObject arrFaces = Rhino.MeshFaces(meshObject, False) If IsArray(arrFaces) Then fid = 0 While fid <= UBound(arrFaces) arrVerts(0) = arrFaces(fid) arrVerts(1) = arrFaces(fid + 1) arrVerts(2) = arrFaces(fid + 2) fid = fid + 3 sumStressMoment = Rhino.VectorAdd(sumStressMoment, IntegrateMoments(strSolid, arrVerts, arrCentroid(0))) Wend End If Rhino.DeleteObject meshObject Else Rhino.Print "Unable to extract analysis mesh" End If StressMoment = sumStressMoment End Function Call Main() Sub Main() Dim strObject, strPlane, arrCurves, arrSection, strSection, arrMoments On Error Resume Next Set objSnSPlugIn = Rhino.GetPluginObject("SnSScript") objSnSPlugIn.SetOutputOnOff False If Err Then MsgBox Err.Description Exit Sub End If strObject = Rhino.GetObject("Select a solid") strPlane = Rhino.GetObject("Select a plane", 8) 'compute the curves of the intersection between the solid and the plane arrCurves = Rhino.IntersectBreps(strObject, strPlane) If Not IsNull(arrCurves) Then 'construct a planar surface arrSection = Rhino.AddPlanarSrf(arrCurves) 'WARNING! The output from AddPlanarSrf can be a collection of surfaces. 'For simplicity only the zeroth one is used. Otherwise their collective 'centroid must be used and their results accumulated. This code DOESN'T 'do that. arrMoments = StressMoment(strObject, arrSection(0)) Rhino.Print arrMoments(0) & "," & arrMoments(1) & "," & arrMoments(2) 'clean up by deleting curves and the cross-sections Dim i For i = 0 To ubound(arrCurves) Rhino.DeleteObject arrCurves(i) Next For i= 0 To ubound(arrSection) Rhino.DeleteObject arrSection(i) Next End If End Sub
Line # | Description |
---|---|
1 | Only scripts with Option Explicit specified can be debugged in the RhinoScript editor (Monkey). |
6 | Global variable for the SnSScript plug-in object. |
13-42 | Define a function to numerically integrate a solution component over a triangle. |
14-15 | Define the quadrature weights and points for integrating over a triangle. |
18 | Compute the area of the current triangle. |
22-40 | Iterate over quadrature weights and points, evaluating the integral of the bending moment due to component stresses. |
46-51 | Define a function to compute the area of a triangle using the cross-product. |
57-90 | Define a function to integrate moments due to component stresses over a surface in Rhino. |
64 | Extract a mesh approximation of the surface. |
73 | Convert the mesh quads to triangles for compatibility with integration algorithm. |
77-83 | Integrate over each mesh face, accumulating their contributions in sumStressMoment. |
85 | Delete the mesh object for the surface. |
93-130 | The main body of the script. |
97 | Load the SnSScript plug-in object. |
105 | Prompt the user to select a solid from the Rhino document. The solid is identified by its GUID stored in strObject. |
106 | Prompt the user to select a section plane from the Rhino document. |
109 | Intersect the plane with the solid to get the intersection curves. |
113 | Convert the section curves into a trimmed plane. |
118-119 | Compute the bending moments from the component stresses and print them out. |
121-127 | Clean up the temporary objects. |
wiki/sns/snsscript/bending_moments.txt ยท Last modified: 2017/07/14 13:48 by claire